
A N L - 7 6 3 4

2lrgonne Bational Xaboratorg
C:WRiTE, A Reentrant Routine

to Convert Hexadecimal Numbers

to EBCDIC Decimal

by

Conrad E. Thalmayer

The facilities of Argonne National Laboratory are owned by the United States Govern
ment. Under the terms of a contract (W-31 -109-Eng-38) between the U. S. Atomic Energy
Commission, Argonne Universities Association and The University of Chicago, the University
ennploys the staff and operates the Laboratory in accordance with policies and progranns formu
lated, approved and reviewed by the Association,

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona
Carnegie-Mellon University
Case Western Reserve University
The University of Chicago
University of Cincinnati
Illinois Institute of Technology
University of Illinois
Indiana University
Iowa State University
The University of Iowa

Kansas State University
The University of Kansas
Loyola University
Marquette University
Michigan State University
The University of Michigan
University of Minnesota
University of Missouri
Northwestern University
University of Notre Dame

The Ohio State University
Ohio University
The Pennsylvania State University
Purdue University
Saint Louis University
Southern Illinois University
University of Texas
Washington University
Wayne State University
The University of Wisconsin

LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on behalf
of the Commission:

A. Makes any warranty or representation, expressed or implied, with r e
spect to the accuracy, connpleteness, or usefulness of the information contained
in this report, or that the use of any infornnation, apparatus, method, or process
disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages r e
sulting from the use of any information, apparatus, method, or process disclosed
in this report.

As used in the above, "person acting on behalf of the Commission" in
cludes any employee or contractor of the Commission, or employee of such
contractor, to the extent that such employee or contractor of the Connmission,
or employee of such contractor prepares, dissenninates, or provides access to,
any infornnation pursuant to his ennployment or contract with the Connnnission,
or his employment with such contractor.

Printed in the United States of Annerica
Available from

Clearinghouse for Federal Scientific and Technical Information
National Bureau of Standards, U. S. Bepartment of Commerce

Springfield, Virginia 22151
Price: Printed Copy $3.00; Microfiche $0.65

ANL-7634
Mathematics and

Computers

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

C:WRITE, A Reentrant Routine
to Convert Hexadecimal Numbers

to EBCDIC Decimal

by

Conrad E. Thalmayer

Chemistry Division

November 1969

PREFACE

This report descr ibes a conversion routine for the
Sigma 5 or Sigma 7 computer -with Floating-Point Option.
It is written in graded format, to be useful to readers of all
levels of interest and sophistication: the general reader ,
for example, may profitably read the first one or t-wo sec
tions; the casual p rogrammer will-want to understand the
second and third sections; only a p rogrammer with special
requirements will have need for the details of the fourth sec
tion, the flow char t s , and the program listing.

This routine is independent of the computer operating
system. It was written in XDS SYMBOL in October 1968 and
October 1969.

TABLE OF CONTENTS

Page

ABSTRACT 5

I. THE PROBLEM 5

n . GENERAL 6

III. EXTERNAL ORGANIZATION 6

IV. INTERNAL ORGANIZATION 7

SUMMARY 9

APPENDIXES

A. Flow Charts 10

B. Listing 28

ACKNOWLEDGMENTS 37

C:WRITE, A Reentrant Routine
to Convert Hexadecimal Numbers

to EBCDIC Decimal

by

Conrad E. Thalmayer

ABSTRACT

This report describes a reentrant , general-purpose
routine for the Xerox Data Systems Signna 5 or Sigma 7 com
puter with Floating-Point Option. C:WRITE converts hexa
decimal numbers of the forms used in the computer into
EBCDIC decimal numbers of desired length in I, E, o r F f o r -
mat. The report explains the need for the routine, describes
its capabili t ies, presents all the information necessary for
using it, and outlines its s t ructure . The flow charts and
listing are included.

I. THE PROBLEM

In Sigma computers , numbers are hexadecimal. Let us represent
the hexadecimal digits, or "higits," as 0,1,2,3 ,4,5,6,7,8,9,A,B,C ,D,E,F and
indicate a hexadecimal number by X ' . . . ' . Then, for example, the number
X' lA ' is equal to (1 • 16^) + {10 • 16°) = 26. Norrrjally, numbers are of
either word (8 higit) or doubleword (16 higit) length and either fixed-point
or floating-point: a fixed-point number, necessar i ly integral, is equal to
the sum of its higits, each successive higit leftward having been multiplied
by a successively higher power of 16; a floating-point number consists of a
two-higit exponent followed by a 6 (or 14) higit fraction.

Outside computers , numbers are (1) normally decimal, (2) of
variable length, and (3) in several formats , i .e. , integral, or with point,
or with point and exponent. Fur thermore , (4) they are read from the com
puter in EBCDIC (Extended Binary Coded Decimal Interchange Code); in
this code, each character is represented by a two-digit number, e.g., ' 1 ' is
represented as X ' F l ' and 'E ' is X'C5' .

For output from the computer, a routine is necessary to convert
numbers of the former types into the lat ter . The routine should be (1) rapid,
(2) brief, (3) versat i le enough to satisfy the needs of all programs using it,
(4) convenient to use, (5) capable of yielding output in standard format, and
(6) able to recognize user e r r o r s and act appropriately. Most importantly,
(7) the routine must be reentrant , i .e. , while it is being used by a program
of given priori ty it must be interruptible by one of higher priority and

subsequently resumable at the point of interruption; there should be no
limit to the number of programs which might thus be sequentially inter
rupted while using the routine.

II. GENERAL

C :WRITE satisfies the above requirements . It accepts short (8 higit)
and long (16 higit), fixed-point and floating-point numbers , and converts to
EBCDIC decimal numbers of any desired length in I, F, or E format.

The seven additional requirements listed above are abetted by,
inter alia, the following: (1) This routine ca r r i e s out only instructions
pertinent to its specific task. It does not employ subroutines. (2) The
twelve tasks a re written as overlapping pairs which use data in common.
(3) The given number and the converted number may be at any location.
(4) Only the minimum number of reg i s te r s is employed, leaving the rest
available to the user . (5) I format output is right-adjusted. (6) The routine
will reject a request if the specified output field is too short . (7) The vital
requirement of reentrancy is attained by carrying out all operations in the
computer r eg i s t e r s . Upon interruption of a program, the contents of these
reg i s t e r s and the address of the interruption are stored in that program's
P r o g r a m Description Table (PDT); upon return to the program, the registers
a re res to red and execution is resumed at the interrupted instruction. This
technique rel ieves the user of supplying some of his working space to the
routine. Inasmuch as probably every rea l - t ime program will use this rou
tine, this will resul t in a major saving of core space.

III. EXTERNAL ORGANIZATION

C:WRITE has twelve entry points, bearing labels of the form
xxxWRITE. The first letter of the label, L or S, indicates whether the
given number is long or short; the second let ter , F or 1, indicates whether
it is floating-point or integer (fixed-point); the third let ter , I, E, or F,
indicates the format of the converted number. The register utilization is
as follows:

R 0 - - U s e r ' s re turn address
R l - -Word address of given number
R2--Byte address of output field
R3--Byte address of end of output field
R4--Byte address of decimal point (F format only)

Thus, for example, if the user branches to LFIWRITE, the word whose
address is in RI , together with the following word, will be treated as a long

floating-point number; the resultant integral EBCDIC decimal number,
preceded by as many blanks as the field length permi t s , will be returned
to the byte address given in R2.

The only reg is te rs altered by this routine are R l -5 in SII conversion,
R l - 6 in SIE, LFI, SFI, LII, LIF, SIF, and Rl -7 in LFE, SFE, LIE, LFF ,
and SFF.

If the value given in R3 delimits a field of sufficient length, the con
version will be performed and the Condition Code set to 0. If the output
field is of insufficient length, the routine will abort to the address in RO
and the Condition Code will be set to 1. For xxl conversion, the field must
be long enough to contain the entire number. For xxF, there naust be room
for at least the integral portion of the number and the decimal point. For
xxE conversion, at least three spaces must be allowed, yielding the exponent
Exx; a negative exponent requires one more byte. In all three cases , a
negative number requires one additional space for the sign.

IV. INTERNAL ORGANIZATION

C :WRITE consists of six pairs of routines sharing a data pool.
Within each pair , either (a) the short given number is extended and treated
as long or (b) the low-order half of the long number is evaluated by the
Sxx routine. In each routine the result is developed one byte at a t ime, but
not str ictly left-to-right.

In SFEWRITE, the given number is loaded into R4, and R5 is cleared.
If the given number is positive, (R4,5) now has the configuration of a long
floating-point number and the routine branches to LFEWRITE. If the given
number is negative, ' - ' i s put into the output field specified in R2, (R 2) is
incremented by 1, (R4) is complemented to give (R4,5) the appropriate
configuration, and the routine branches to LFEWRITE.

In LFEWRITE, the given number is loaded into R4,5; if it is negative,
it is complemented, ' - ' i s put into the output field, and (R2) is incremented.
The routine may now be considered in two par t s . In Pa r t 1 the number is
repeatedly multiplied by . 1 or 10 until the product lies between 1 and 10; the
number of these multiplications yields the decimal exponent. The routine
now aborts if there is insufficient space for the exponent; otherwise the
exponent is put into the right end of the output field and (R3) is set to the
end of the mantissa field. In Pa r t 2 the units digit is copied, converted to
EBCDIC, and put into the output field, followed by ' . ' . In the rest of Pa r t 2,
which is i terated for each digit, the number is converted to fixed-point, the
units digit is removed, the remainder is multiplied by 10, and the new units
digit is copied, converted, and put into the output field. (R2) is incremented
by 1 as each byte is developed; if {R2) is then equal to (R3), the routine
exits normally.

In LIEWRITE, the given number is first compared with values,
TENP, of successively smaller powers of 10, found in a table. When a
value of TENP is found that is smaller than the number, it is repeatedly
subtracted from the number until the number is less than TENP. This is
then repeated for successive values of TENP do-wn to lO', after which the
routine transfers to SIEWRITE. The original value of TENP determines
the exponent, to be later converted by SIEWRITE, and the number of sub
tractions determines each digit, which is converted and placed in the
output field immediately.

In SIEWRITE, the procedure is as in LIEWRITE, but using "word"
rather than "doubleword" instructions and using division rather than
repeated subtraction to develop each digit. The exponent, whose value
may have been determined in LIEWRITE, is finally converted to EBCDIC
and placed in the output field.

In SFIWRITE, the given number is loaded into R4, 0 is loaded into
R5, and the output field is cleared to blanks. If the number is negative,
that is recorded, space is made for the sign, and the number is comple
mented. The routine then branches to LFIWRITE.

In LFIWRITE, the given number is loaded into R4,5 and the output
field is cleared to blanks. If the number is negative, that is recorded,
space is made for the sign, and the number is complemented. The given
number is now repeatedly multiplied by .1 until its value is less than 10; at
each multiplication the starting output address , originally (R3), is decreased
one byte. If this value is then lower than (R2), the routine aborts . If the
value of the number is less than 1, it is now set equal to 0. If it had been
found to be negative, - is put into the output field. The units digit is now
removed from the number, converted to EBCDIC, and put into the output
field. The remainder of the number is converted to fixed-point, multiplied
piecemeal by 10, and the cycle is repeated.

In LIIWRITE, the given number is loaded into R4,5, the output field
IS cleared to blanks, and the starting output address is set to (R3)-8 If the
number is negative, that is recorded, the starting output address is decre
mented by 1, and the number is complemented. The given number is now
compared with tabulated powers of 10, from 10'« to lO'; if it is smaller
than any of these, the routine branches to SIIWRITE. Otherwise, the starting
output address is moved left appropriately; if it is lower than (R2), the
routuie aborts. If the number is negative, the sign is now put into the out
put field. The result is then developed by repeated subtraction from the
given number of the power of 10 found above; the number of subtractions
yields the digit, which is converted to EBCDIC and put into the output field'
this cycle IS repeated with values down to lO', after which the routine
transfers to SIIWRITE.

In SIIWRITE, the procedure is s imilar to that in LIIWRITE. The
main difference is that the result is developed by division of the given num
ber by powers of ten, followed by repeated division of the remainder .

In SFFWRITE, the given number is loaded into R4, 0 is loaded into
R5, and the integer portion of the output field is cleared to blanks. If the
number is negative, that is recorded, space is made for the sign, and the
number is complemented. The routine then branches to LFFWRITE.

In LFFWRITE, the given number is loaded into R4,5 and the integer
portion of the output field is cleared to blanks. If the number is negative,
that is recorded, space is made for the sign, and the number is comple
mented. If the given number is not less than 1, it is repeatedly multiplied
by .1 until its value is less than 10; at each multiplication the starting out
put address , originally the units position, is decreased one byte. If this
value is then lower than the given starting address , the routine aborts . If
the given number has been found to be negative, - is now put into the output
field. If the number is less than 1, a point is put into the output field; then
the number is repeatedly multiplied by 10, and 0 is put into the output field,
until either the number is no longer less than 1 or the field is filled. In the
conversion loop proper , the number consists of a units digit and a fraction;
the units digit is removed, converted to EBCDIC, and put into the output
field; the fraction is converted to fixed-point, multiplied piecemeal by 10 to
yield a new units digit, and the cycle is repeated. When the integer portion
of the output field has been filled, a point is inserted and the cycle resumes
until the field is filled.

In LIFWRITE, the address of LIIWRITE is stored, and the routine
branches to SIFWRITE. »

In SIFWRITE, the address of SIIWRITE is stored. Zeros are now put
into the portion of the output field to the right of the desired decimal point
position and the point is inserted. The routine then branches to LIIWRITE
or SIIWRITE.

SUMMARY

C:WRITE is a routine to convert hexadecimal numbers of the forms
used in the computer into EBCDIC decimal numbers in the three usual
formats . The routine is reentrant , general-purpose, convenient, accurate ,
economical, and fail-safe.

10

APPENDIX A

Flow Charts

C:NRITE
PAGE 1

C. E. THflLMRYER
ID/GB
10/G9

11

CONVERT DIGITl
TD EBCDIC

I DIGITl •* OUTrLD
I

OUTCNT * 1

C:WRITE
PAGE S

/ LFNUH2 \ N
\HIGH BIT/

YI
REMOVE HIGH BIT]

1
LFNUMl •• 5 1

i.

file:///HIGH

12

I OUTCNT * ~ n

ICOHP. SFNDHI

C:WRITE
PRGE 3

^

13

C:WRITE
PAGE H

I ENDCNT -"~F1

I B •» EXF

I - -» OUTFLDI

I OUTCNT * " T

ICOHP. LINUH

I 10 -» I 1

14

C:WRITE
PAGE S

15

C:WRITE
PAGE 6

16

\sit<t\ [SIESJ UlExJ C:NRITE
PAGE 7

E •» OUTFLD
1-

OUTCNT * 1
3=

EXP y 10
nr CONVERT QUOTIENT

TO EBCDIC

I DIGIT •» OUTFLD I

I OUTCNT * 1 I

CONVERT REMAINDER
TO EBCDIC

I DIBIT -» OUTFLD |

17

C:WRITE
PAGE 8

18

FIX LFNUMl AND
REMOVE DIGITl

I LFNUMl ' 10 I

C:WRITE

/ LFNUME \, N
\HIGH BIT/

YT

1 REMOVE HIGH BIT|
1 1 LFNUMl • 5 1

1

PAGE 9

file:///HIGH

19

BLANK •» SIGN 1
I I

0 •» LFNUMe
1 '

I LOAD SFNUM |

I OUTCNT •» SPCCNT |

I BLANK •»" SPCFLD

I SPCCNT * 1

I ENDCNT •* SPCCNT

C:WRITE
PAGE 10

20

C:WRITE
PAGE 11

I SPCCNT ^ X

I COMP. LINUM

10 •» I

21

C:WRITE
rnoE 18

22

23

C:WRITE
rnoc !••

24

25

C:WRITE
PAGE 16

FIX LFNUMl AND
REMOVE DIGITl

i :

I REMOVE HIGH BIT|

I LFNUMl * S I

I
I LFHUMJ » 10 I

ILFHUMZ •> LFNUMl I

i
CONVERT DIGITl

TO EBCDIC
I

26

C:WRITE
PBGC 17

27

fsiruBlTE j

ISIIHRITC * APRS I

C:WRITE
pnoc IB

- * o *

•*K>

N O PLCCNT/^

, Y
0 •» ENDFLP

I CHOCHT - 1

APPENDIX B

Listing

t**:)l*t **** *** ***********
*
*** C:WRITE REENTRANT ROUTINE TO WRITE EBCDIC DECIMAL NUMBERS
* C.E.T. 10/17/69
*
*
*
*

*
*
*
*

*

*
*

LFEWRITE CONVERTS A
SFEWRITE CONVERTS A
LIEWRITE CONVERTS A
SIEWRITE CONVERTS A
LFIWRITE CONVERTS A
SFIWRITE CONVERTS A
LIIWRITE CONVERTS A
SIIWRITE CONVERTS A
LFFWRITE CONVERTS A
SFFWRITE CONVERTS A
LIFWRITE CONVERTS A
SIFWRITE CONVERTS A

LONG FLOATING HEX NUMBER TO E FORMAT DECIMAL
SHORT FLOATING HEX NUMBER TO E FORMAT DECIMAL
LONG FIXED HEX NUMBER TO E FORMAT DECIMAL
SHORT FIXED HEX NUMBER TO E FORMAT DECIMAL
LONG FLOATING HEX NUMBER TO I FORMAT DECIMAL
SHORT FLOATING HEX NUMBER TO I FORMAT DECIMAL
LONG FIXED HEX NUMBER TO I FORMAT DECIMAL
SHORT FIXED HEX NUMBER TO I FORMAT DECIMAL
LONG FLOATING HEX NUMBER TO F FORMAT DECIMAL
SHORT FLOATING HEX NUMBER TO F FORMAT DECIMAL
LONG FIXED HEX NUMBER TO F FORMAT DECIMAL
SHORT FIXED HEX NUMBER TO F FORMAT DECIMAL

RO
RI
R2
R3
R4

Rl-7
Rl-6
Rl-5

LINK
ADDRESS OF THE HEXADECIMAL NUMBER
BYTE ADDRESS OF OUTPUT FIELD
BYTE ADDRESS OF END OF OUTPUT
BYTE ADDRESS OF DECIMAL POINT

FIELD
(F FORMAT ONLY)

ARE ALTERED BY LFE, SFE,
ARE ALTERED BY SIE, LFI,
ARE ALTERED BY SI I

LIE,
SFI,

LFF,
LII,

SFF
LIF, SIF

FTEN

FPONE

FONE

EMASK
FMASK
IMASK
HMASK
XMASK
LFEWRITE

CONDITION CODE:
NUMBER CONVERTED
INSUFFICIENT SPACE FOR OUTPUT

LFEI

DEF LFEWRITE.SFEWRITE.LIEWRITE.SIEWRITE
DEF LFIWRITE.SFIWRITE.LIIWRITE.SIIWRITE
DEF LFFWRITE.SFFWRITE,LIFWRITE,SIFWRITE
LOCAL FTEN,FPONE,FONE,TEN
BOUND 8
DATA X'<ilAOOOOO',X'000O0O00'
BOUND 8
DATA X'^0199999',X'99999q9A'
BOUND 8
DATA X'41lOOOOO'.X'OOOOOOOO'
DATA X'OOFFFFFF'
DATA X'OOOOOOFO'
DATA X'OOOFFFFF'
DATA X'80000000'
DATA x'TFFFFFFF'
LI,6 •-•
LI,7 0
LD.i. *1
BCR.l LFEI
STB,6 0,2
AI,2 1
LCD,* 4
LI.l 0
CD,4 FTEN
BCS.l LFE2
FML,* FPONE

FOR MANTISSA AND EXPONENT
EXP
LFNUM
IF NOT -.
MANTISSA SIGN
ADDRESS OF NEXT BYTE
MAKE LFNUM *
EXPNEG

IF LESS THAN 10
TO PRODUCE x.xxxxxx::::;:::::;.:.

29

LFE2

LFE3

LFE*

LFE5

LFE6

LFE7

LFE8

LFE9

A I . T
B
C D , *
B C R . l
L I , 1
A I , 3
S T B , 6
A I , 3
L W , 6
AND, 6
C I , 6
B C S , 3
L l , 7
B
AI , 7
F M L , 4
C D , *
BCR. 1
B
L I , 6
DW,6
OR, 6
S T B , 6
A I , 3
A I . T
S T B . 7
A I . 3
C I . l
BCR, 1
A I . 3
L I , 6
S T B . 6
C M , 2
BCR. 2
L C I
B
CW.2
B C S . l
L C I
B
L W . 7
S L S , 7
O R . 7
S T B , 7
A I . 2
C M . 2
B C S . l
L C I
B
L I , 7
S T B , 7
A I . 2
CW,2
B C S . l
L C I
B
A N D . *
L W . 7
M I . 7

1
L F E I
FONE
L F E *
- I
- 2
0 . 3
2

*
EMASK
0
L F E 3
79
L F E *
1
FTEN
FONE
L F E *
LFE3
0
TEN
FMASK
0 . 3
- I
X ' F O *
0 . 3
- 1
0
LFE5
- I
• E '
0 , 3
3
LFE6
1
* 0
3
LFE7
0
* 0

*
- 2 0
FMASK
0 . 2
I
3
L F E 8
0
* 0
• •
0 . 2
I
3
L F E 9
0
* 0
IMASK

*
10

INCREMENT EXP

IF NOT LESS THAN I
EXPNEG SIGNAL

EXP S IGN

FOR ZERO
F I X

I F NOT 0
EXP

CHECK

EXP
TO PRODUCE X.XXXXXXXXXXXXX

IF NOT LESS THAN I

CONVERT TO DECIMAL
CONVERT EXP2 TO EBCDIC

CONVERT EXPl TO EBCDIC

IF EXP NOT

NEXT BYTE VS. FORBIDDEN SPACE
IF NEXT NOT GREATER
ERROR: INSUFFICIENT SPACE

IF NEXT IS SMALLER
OUTPUT: EXX OR E-XX OR -E-XX
NORMAL EXIT
FOR DIGIT COPYING

CONVERT TO EBCDIC

OUTPUT: XEXX OR XE-XX OR -XE-XX
NORMAL EXIT

OUTPUT: X.EXX OR X.E-XX OR -X.E-XX
NORMAL EXIT
FIX AND REMOVE UNIT DIGIT
LFNUMl
LFNUMl*lO

30

LFEA

CW,5
BCR.*
AND,5
AI.T
MI.*
AW.*
LW,7
SLS,7
OR.7
STB,7
AI.2
CW.2
BCS.l
LCI
B

SFEWRITE LI,5
LI.6
LI.7
LW,*
BCR,I
STB,6
AI.2
LCW,*
B
BOUND
DATA.e
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

TEN09
TENIO
TENll
TEN12
TEN13
TENl*
TEN15
TEN16
TEN17
TEN18
LIEWRITE AI,3

LI,6
LD,*
BCR,I
LI.7
STB.7
AI,2
LCD,*
LI.l
CD,*
BCR.l
BOR, I
LI.6
8
AW.6
CW,2
BCR,2
LCI
B
LI.7
CW.2
BCR.l
CD,*
BCS.l

LIEO
LIEl

LIE2

LIE3

LIE*

HMASK
LFEA
XMASK
5
10
7
*
-20
FMASK
0,2
I
3
LFE9
0
• 0
0
f _ .

0
*1
LFEI
0.2
I
*
LFEI

SIGN BIT
IF ABSENT
REMOVE BIT
A*8
LFNUM2*10
LFNUM*10
FOR DIGIT COPYING

CONVERT TO EBCDIC

NORMAL EXIT
(END OF LFEWRITE)
TO EXTEND SFNUM TO LFNUM
FOR MANTISSA AND EXPONENT
EXP
SFNUM
IF NOT -: TREAT AS LFNUM
MANTISSA SIGN
ADDRESS OF NEXT BYTE
MAKE SFNUM •
TREAT AS LFNUM (END OF SFEWRITEI

1000000000
X'000 0000 2',X'5*OBE*00'
X"0000001 7*.X'*876E800'
X'O00O0OE8'.X'D*A5lOOO'
X'00000918'.X'*E72AOOO'
X'00005AF3',X«107A*000'
X'00038D7E'.X'A*C68000•
X'002 386F2'.X'6FC10000'
X'0163*578".X'5D8A0OOO*
X'0DEOB6B3'.X'A76*000C'
-2 0.3 IS FIRST BYTE FORBIDDEN TO MANTISSA
8 EXPONENT
• 1
LIEO IF NOT -

0.2
I
*
10
IEN09-l,l
LIE2
LIEl
-1
SIEO
I
3
LIE3
I
*0
0
3
SIEX
TEN09-l,l
LIE5

INDEX FOR TEN POWERS (=EXP-8)

FOR SIEWRITE
FOR TREATMENT AS SINGLE WORD
EXPONENT

ERROR:
ABORT
DIGIT

INSUFFICIENT SPACE

WRITE EXP ONLY

31

LIES

LIE6
LIE7

LIES

LIE9

ONE
TEN
TEN2
TEN3
TEN4
TENS
TEN6
TENT
TENS
rEN9
SIEWRITE

SIEO
SIEl

SIE2

SIE3

SO,*
AI.T
B
AI.T
STB.7
AI.2
CW.2
BCR.l
LI.7
STB.7
AI.2
CW,2
BCR.l
B
LI.7
CO.*
BCS.l
SO.*
AI.7
B
AI.T
STB.7
AI.2
CW.2
BCR.l
BDR.l
LI.l
B
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
AI,3
LI.6
LW.5
BCR.l
LI,*
STB.*
At.2
LCW,5
LI.l
CW.5
BCR.l
BOR.l
LI.l
AW.6
CW,2
BCR.2
LCI
B
LI,*
CW.2
BCR.l

TEN09-l,l
1
LIE*
X'FO*
0.2
1
3
SIEX
'.•
0.2
1
3
SIEX
LIE9
0
TENOg-l.l
LIES
TEN09-1,1
1
LIE7
X'FC
0.2
I
3
SIEX
LIE6
9
SIE*
1
10
100
1000
10000
100000
1000000
10000000
100000000
1000000000
-2
- 1
• 1
SIEO
• . .
0,2
1
5
10
ONE-1.1
SIE2
SIEl
1
1
3
SIE3
1
*0
0
3
SIEX

EBCDIC DIGIT

lEND OF LIEWRITE: BRANCH TO SIEWRITEI

*3 IS FIRST BYTE FORBIDDEN TO MANTISSA
EXPONENT

IF NOT -

INDEX FOR TEN POWERS (=EXP+1»

IF SINUM=0
EXPONENT

IF NOT BEYOND LIMIT
ERROR: INSUFFICIENT SPACE
ABORT
QUOTIENT = DIGIT

32

M.'s X'FO'* EBCDIC FIRST DIGIT
STB,5 0,2
LH.5 *
AI.2 1
CW.2 3
BCR.l SIEX
LI.*
STB.* 0,2
AI,2 1
CW,2 3
BCR.l SIEX
B SIE5

SIE* LI,* 0
0Wt4 ONE-l.l
AI>5 X'FC EBCDIC DIGIT
STB,5 0.2
LW,5 *
AI,2 1
CW,2 3
BCR.l SIEX

SIE5 BDR.l SIE*
LI.* 'O-

SIE6 STB.* 0.2
AI.2 1
CW.2 3
BCS. l SIE6

SIEX L l . * ' E '
STB. * 0 ,2
A I , 2 1
L I , * 0
LW,5 6
OW.* TEN
A I . 5 X'FO"
STB.5 0,2 EXPONENT FIRST DIGIT
AI.2 1
DR.* FMASK
STB.* 0.2 EXPONENT SECOND DIGIT
LCI 0
B *0 (END OF SIEWRITE AND LIEWRITE)

LFIWRITE LI.6 • •
LD.* *1 LFNUM
LW.l 2

LFIO CW.l 3
BCR.l LFI7
STB,6 0,1
AI,1 1
B LFIO

LFI7 CI,* 0
BCR.l LFIl IF NOT -
LI.6 •-• SIGN
Al.l -1 FOR SIGN
LCD.* * MAKE LFNUM •

LFIl CO.* FTEN
BCS.l LFI2 IF LESS THAN 10
FML.* FPONE TO PRODUCE X.XXXXXXXXXXXXX
Al.l -1 EXPAND Ol/TFIELD
B LFIl

LFI2 CW.l 2 REQUIRED VS. ALLOWED FIRST BYTE ADDRESS

33

L F I 3

L F I 8

L F I *

L F I 5

L F I 6

B C R . l
L C I
B
L W . 2
C W . *
B C R . l
L I . *
C I . 6
B C R . 3
S T B . 6
A I . 2
B
A N D . *
L W . l
M I . I
C W . 5
B C R . *
A N D . 5
A l . l
M I . *
A W . *
L W . l
S L S . l
O R . I
S T B . I
A I . 2
CW.2
BCR. 2
L C I
B

S F I W R I T E L I . 6
L I . 5
L W . *
L W . l

S F I O C W . l

B C R . l
S T B . 6
A l . l
B

S F I l C I . *
S T W , 3
B C R . l
L I . 6
A l . l
L C W . *
B

L I I W R I T E L I . 6
L D . *
L W . l
C W . l
B C R . l
S T B . 6
A l . l
8

A I . 3
C I . *
B C R . l
L I . 6
A I . 3

L I I O

L I I 8

L F I 3
1
* 0
1
FONE
L F I 8
0
• t

L F I 6
0 . 2
1
L F I 6
IMASK
*
10
HMASK
L F I 5
XMASK
5
10
1
*
- 2 0
FMASK
0 . 2
I
3
L F I *
0
* 0

. .
0
»1
2
3
S F I l
0 . 1
I
SFIO
0
I
L F I l
• _ •
- I
*
L F I l
* i

* 1
2
3
L I I B
O . l
I
L I I O
- 8
0
L I I I

.— .
- 1

INSUFFICIENT SPACE
ABORT
ADDRESS OF NEXT OUTPUT BYTE

IF NOT -
SIGN
INCREMENT BYTE ADDRESS

FIX AND REMOVE UNIT DIGIT
LFNUMl
LFNUMl»lO
SIGN BIT
IF ABSENT
REMOVE BIT
A*8
LFNUM2*10
LFNUM*10
FOR DIGIT COPYING

CONVERT TO EBCDIC

INCREMENT BYTE ADDRESS

NORMAL EXIT
(END OF LFIWRITE)

SFNUM

ADDRESS OF OUTPUT BYTE
IF NOT -: TREAT AS LFNUM
SIGN
FOR SIGN
MAKE SFNUM •
TREAT AS LFNUM (END OF SFIWRITE)

LINUM

IF NOT -

FOR SIGN

34

L I U
LII2

LII3

LII*

LII5
LII6

LII7

SIIWRITE

SIIO

SII6

SIIl
SII2

SII3

SII*

SII5

LCD.*
LI,1
CD,*
BCR, I
BDR,l
AI,3
LW.*
B
SW.3
CW,3
BCR.l
LCI
8
CI.6
BCR,3
STB,6
AI,3
LI,6
CD,*
BCS.l
SD.*
AI.6
B
AI,6
STB,6
AI,3
BOR, I
LI.l
B
LI,*
LW,5
LW,l
CW.l
BCR.l
STB.*
AI ,1
B
AI,3
CI.5
BCR,I
LI,*
AI,3
LCW,5
LI.l
CW,5
BCR.l
BDR.l
LI,1
SW,3
CW,3
BCR,I
LCI
B
CI,*
BCR,3
STB,*
AI,3
LI,*
DW,*

*
10
TEN09-l,l
LII3
LII2
9
6
SII I
I
2
LII*
1
*0
* .
LII5
0.3
I
0
TEN09-l,l
LII7
TEN09-l,l
I
LII6
X'FO'
0,3
I
LII5
9
SII5

. ,
*1
2
3
SII6
O.l
1
SIIO
1
0
SII I
l _ •

-I
5
10
ONE-l.l
SII3
SII2
1
1
2
SII*
1
*0
1 *

SII5
0.3
I
0
ONE-l.l

MAKE LINUM +
INDEX FOR TEN POWERS
FIND NEXT LOWER TEN POWER

FOR SIIWRITE
FOR SIIWRITE
TREAT AS SINUM
FIRST BYTE ADDRESS
VS. ALLOWED FIRST ADDRESS

INSUFFICIENT SPACE
ABORT

IF NOT -
SIGN

DIGIT

EBCDIC DIGIT

FOR SIIWRITE
TREAT AS SINUM

SINUM

(END OF LIIWRITE)

IF NOT -

FOR SIGN
MAKE SINUM •
INDEX FOR TEN POWERS
FIND NEXT LOWER TEN POWER

FOR ZERO
STARTING BYTE ADDRESS
VS. ALLOWED STARTING ADDRESS

INSUFFICIENT SPACE
ABORT

IF NOT -
SIGN

QUOTIENT = DIGIT

35

LFFWRITE

LFFl

LFF2

LFF3

LFF*

LFF5

LFF6

LFF7

LFF8

LFF9

AI,5
STB.5
LW.5
AI.3
BDR.l
LCI
B
LI ,6
LW.7
LO.*
LW.l
CW.2
BCR.l
STB.6
AI.2
B
Cl.*
BCR.l
LI.6
AI.2
LCD.*
CW.*
BCS.l
AI.2
AI.T
CO.*
BCS.l
FML.*
AI.2
B
CW.2
BCR.l
LCI
8
CI.6
BCR.3
STB.6
AI.2
B
LI.6
CW.*
BCR.l
LW.7
STB.6
LI.l
AI.2
CW,2
BCS.2
FML.*
CW.*
BCR.l
ST8.1
B
AND.*
LW.l
Ml.I
CW,5
BCR.*
AND.5

X'FC
0.3
*
I
SII5
0
*0
t I

*
• • l

2
7
LFF2
0.2
1
LFFl
0
LFF3
f — .

-1
*
FONE
LFF5
-I
-I
FTEN
LFF5
FPONE
-1
LFF*
1
LFF6
1
*0
. .
LFF7
0.2
1
LFF7
•••
FONE
LFFB
3
0.2
•0'
I
7
LFFD
FTEN
FONE
LFFB
0.2
LFFB
IMASK
*
10
HMASK
LFFA
XMASK

EBCDIC DIGIT

REMAINDER

(END OF SIIWRITE)

POINT BYTE ADDRESS
LFNUM
FIRST BYTE ADDRESS
OUTPUT ADDRESS VS. POINT ADDRESS

BLANK INTO OUTFIELD

LFNUM
IF NOT -
SIGN
FOR SIGN
MAKE LFNUM •

IF LESS THAN ONE

UNITS ADDRESS

IF LESS THAN 10
TO PRODUCE X.XXXXXXXXXXXXX
EXPAND OUTFIELD

REQUIRED VS. ALLOWED FIRST BYTE ADDRESS

INSUFFICIENT SPACE
ABORT

IF NOT -
SIGN
INCREMENT BYTE ADDRESS

IF NOT LESS THAN ONE
END ADDRESS
POINT

INCREMENT OUTFIELD
OUTFIELD VS. ENDFIELD

TO PRODUCE X.XXXXXXXXXXXXX

ZERO

FIX AND REMOVE UNIT DIGIT
LFNUMl
LFNUM1*10
SIGN BIT
IF ABSENT
REMOVE BIT

36

LFFA

LFFB

LFFC

LFFD

SFFWRITE

SFFl

SFF2

LIFWRITE

SIFWRITE
SIFl
SIF2

SIF3

Al.l
MI.*
AW.*
LW.l
SLS.l
OR.I
STB.I
AI.2
CW.2
BCR. 2
CW,7
BCR. 3
LW.7
STB.6
B
LCI
B
LI.6
LW.7
LW.*
LI.5
LW.l
CW.2
BCR.l
STB.6
AI.2
B
CI.*
BCR.l
LI.6
AI.2
LCW.*
B
LI.5
B
LI.5
LI.6
CW.3
BCR.2
STB,6
Al,3
B
LI,6
STB,6
AI,3
B
END

5
10
1
*
-20
FMASK
0,2
I
7
LFF9
3
LFFD
3
0,2
LFFC
0
*0
. ,
*
*1
0
2
7
SFF2
0.2
I
SFFl
0
LFF3

.—,
-I
*
LFF3
LIIWRITE
SIFl
SIIWRITE
0
*
SIF3
0,3
-1
SIF2

'.'
0,3
-1
*5

A*8
LFNUM2*10
LFNUM*10
FOR DIGIT COPYING

CONVERT TO EBCDIC

INCREMENT OUTPUT ADDRESS
VS. UNITS ADDRESS OR END ADDRESS

IF END ADDRESS
END ADDRESS
POINT

NORMAL EXIT
(END OF LFFWRITE)

POINT BYTE ADDRESS
SFNUM
FOR LFNUM
FIRST BYTE ADDRESS
OUTPUT ADDRESS VS. UNITS ADDRESS

BLANK INTO OUTFIELD

LFNUM
IF NOT -: TREAT AS LFNUM
SIGN
FOR SIGN
MAKE SFNUM *
TREAT AS LFNUM (END OF SFFWRITE)
FOR LII CONVERSION
(END OF LIFWRITE)
FOR SII CONVERSION

END ADDRESS VS. POINT ADDRESS

ZERO
DECREMENT END ADDRESS

POINT
UNITS ADDRESS
(END OF SIFWRITE)

37

ACKNOWLEDGMENTS

I am grateful to Paul Day and Henry Krejci for the discussions in
which the approach to the problem was developed.

ABGONNE NATIONAL LAB WES I

Bllili'il
"" 3 4444 06034546

